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Abstract. Before-after-control-impact (BACI) analysis and randomized intervention analysis

(RIA) are commonly applied to time series of response measurements obtained from two

ecological units, one of which is subjected to an intervention at some intermediate time.

Positive results from the analyses are interpreted as evidence of a potentially meaningful

association between the intervention and the response. Applied to 154 pairs of actual eco-

logical time series, RIA done at the 5% level rejected the hypothesis of no association 20% of

the time when both units were in fact undisturbed, and 30% of the time when one of the two

units had received an intervention. Correction for �rst-order serial autocorrelation in the

time series of between-unit di�erences reduced these rejection frequencies to 15% and 28%,

respectively. A two-stage analysis method that attempts to adjust for temporal variability

of early and late response means failed to �nd an association in any of the pairs of \control"

units, and found evidence of an association in only 14{15% of the pairs in which one unit

was disturbed.

These results suggest that RIA (and BACI analysis) greatly overstate the evidence for

associations of interventions with ecological responses, and that attempts to modify these

methods to account for temporal variability of response trajectories result in tests with very

limited power. It may be that the best strategy for interpreting data from BACI designs is to

rely on graphical presentation, expert judgement, and common sense, rather than P -values

derived from hypothesis tests of questionable validity.
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domized intervention analysis; serial correlation; time series; two-stage intervention analysis.

Introduction

In the before-after-control-impact (BACI) design, a pair of ecological units is monitored over

time, with regular measurements of some response of interest. At some point during the

monitoring, an intervention is applied, or a disturbance is noted, in one of the two units.

The post-intervention responses in the disturbed unit are compared to the pre-intervention

responses in that unit, and to the responses measured in the undisturbed \control" unit.

Large di�erences provide possible evidence of an e�ect of the intervention. This design has

been used, without statistical analysis, in some famous and in
uential ecological experiments

(Likens et al. 1970, Schindler and Fee 1974).

While statistical inference based on a single pair of units seems impracticable, some

authors have suggested calculating the di�erences in the response between units for each ob-

servation time, and then comparing the pre-intervention to the post-intervention di�erences

with either a two-sample t-test (the original BACI analysis; Stewart-Oaten et al. 1986) or

a randomization test (randomized intervention analysis, or RIA; Carpenter et al. 1989).

Although this approach has been criticized on several grounds (Hurlbert 1984; Underwood

1992, 1994; Smith et al. 1993; Murtaugh 2000; Conquest 2000), it seems to have achieved

currency in the ecological literature (Faith et al. 1991, Roberts 1993, Schroeter et al. 1993,

Reitzel et al. 1994, Vose and Bell 1994, Stout and Rondinelli 1995, Uddameri et al. 1995,

Hogg and Williams 1996, Lydersen et al. 1996, Schmitt and Osenberg 1996, Wallace et al.

1997, Johnston et al. 1999, del Rosario and Resh 2000, Keough and Quinn 2000, Solazzi et

al. 2000, Wardell-Johnson and Williams 2000).

Recently I argued that BACI analysis and RIA are 
awed because they ignore possible

serial correlation of the between-unit di�erences, and they assume that the trajectories of the

response would have been exactly parallel in the absence of the intervention (Murtaugh 2000).
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Stated another way, it is assumed that the di�erence between early and late responses would

be the same in all unmanipulated units. Statistical simulations suggested that rejection

frequencies based on this approach are probably much too high. I proposed an alternative,

two-stage method that attempts to address these problems but appears to have very limited

power.

Since it is never clear how e�ectively simulations capture the complexities of real data,

in this paper I apply these analysis methods to actual data collected in ways consistent with

the BACI design. I compare the performance of RIA to that of newer methods that adjust

for serial correlation of between-unit di�erences and temporal variability of the response

trajectories in the two units.

Statistical Methods

BACI analysis and RIA have been described previously (Stewart-Oaten et al. 1986; Car-

penter et al. 1989). In my implementation of RIA, two-sided P -values were based on 20,000

permutations of the original time series of between-unit di�erences.

The newer methods are from Murtaugh (2000). Two-stage intervention analysis can be

summarized as follows.

1. For the two original time series of observed responses:

(a) Calculate the four half-series means for the two time series (i.e., control before,

control after, treated before, treated after).

(b) Use three of these means { control before, control after, and treated before { to

estimate a component of variation re
ecting the e�ects of time periods within

units.

2. For the time series of between-unit di�erences:
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(a) Use generalized least squares to �t a model of constant half-series means plus er-

rors having �rst-order serial autocorrelation. That is, assume the pre-intervention

di�erences have one mean, and the post-intervention di�erences have another,

with serially-correlated errors added to the means to yield the observed di�er-

ences.

(b) Test the hypothesis that the �rst-order autoregression coeÆcient is zero. If the

hypothesis is not rejected, revert to a model that assumes independent errors.

3. Using variance estimates from (1) and (2), test the hypothesis that the mean post-

intervention di�erence is equal to the mean pre-intervention di�erence.

A more detailed description of this methodology can be found in Appendix I.

I analyzed real data sets using (i) RIA; (ii) adjustment for serial correlation of between-

unit di�erences; (iii) adjustment for temporal variability of half-series response means; and

(iv) adjustment for both serial correlation and temporal variability.

The Data

I worked with data collected from 13 sources, which yielded 154 sensible comparisons of

two time series (see Appendix II). These data were identi�ed from literature searches and

discussions with ecologists. Included are (i) data sets to which BACI analysis or RIA was

applied by the original authors; (ii) data generated by BACI-like designs, but not analyzed

with the usual two-sample test; and (iii) data from unmanipulated \reference" units that

were identi�ed by the authors as ecologically similar. While the 13 sources of data are not a

random sample from any clearly de�ned population, it is hoped that they are representative

of the kinds of studies to which BACI analysis and RIA are usually applied.

Ninety-three of the paired comparisons are from systems in which one of the two units

was manipulated, and the other 61 comparisons involve pairs of undisturbed \control" units.
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The intent was to see how often the statistical methods reject true null hypotheses, as well

as how powerful they are in the detection of possible intervention e�ects.

For pairs of unmanipulated units, a hypothetical intervention was assumed to have oc-

curred at the midpoint of the time series: observation times up to and including the median

time were considered to be \pre-intervention". The pre-intervention di�erences were then

compared to the post-intervention di�erences with the methods described in the preceding

section. (Not all BACI studies have equal numbers of pre- and post-intervention observation

times, but the mean, study-speci�c proportion of pre-intervention observation times in Table

1 is 0.49.) See Appendix III for additional details on the implementation of these analyses.

Results and Discussion

Serial Correlation

Figure 1 is a histogram of the estimated values of the �rst-order autoregression coeÆcient

for the time series of between-unit di�erences. Of the 154 paired comparisons, 26 yielded

positive estimates that were statistically di�erent from zero (P < 0:05), and seven yielded

statistically signi�cant negative values.

Most of the positive correlations seem to arise from a strong seasonal cycle of the response

in one unit, unmatched by a cycle of comparable magnitude in the other unit (e.g., see

Figure 2). The between-unit di�erences retain a seasonal pattern, which, in the context of

the constant half-series means model, is interpreted as positive serial correlation.

The negative correlations come from Reference E, the studies of zooplankton densities

in mesocosms. These apparently result from asynchronous seasonal peaks of zooplankton

densities in pairs of mesocosms. The between-unit di�erences are large and alternating in

sign near these spikes in zooplankton numbers, leading to negative estimates of the serial

autoregression coeÆcient.
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Figure 3 shows an example of such a comparison. Analysis of the densities on the orig-

inal scale yields a time series of di�erences with strong negative serial correlation. When

the data are log-transformed, e�ectively \expanding" the early- and late-season di�erences

and reducing the in
uence of the mid-season di�erences, the evidence for serial correlation

disappears (bottom panel of Figure 3).

The above observations point to the inadequacy of the constant half-series means model

for the di�erences, which interprets all departures from the constant means as random error.

Instead of being modeled as part of the \signal", as is usually done in time-series analyses,

seasonal variations in the between-unit di�erences are modeled as serially correlated errors

added to the half-series means. It is obvious that many of the time series of di�erences

are nonstationary (e.g., see the middle panel of Figure 3), so that application of the �rst-

order autoregression model is of questionable value. More complicated models, including a

seasonal component, would be needed for proper statistical treatment of these time series.

Rejection Frequencies

Table 1 shows the results of applying RIA and two-stage intervention analysis to the 154 pairs

of time series. Because of the questionable value of applying the �rst-order autoregression

model to the time series of di�erences, Table 1 focuses on two-stage intervention analysis

without adjustment for serial correlation of the between-unit di�erences.

Inspection of the results for pairs of \control" units in Table 1 shows that the P -values

from RIA tend to be much smaller than the P -values from two-stage intervention analysis.

The rejection frequencies for these methods, along with two other variants of two-stage

intervention analysis, are summarized in Table 2.

When there is no intervention, RIA rejects the null hypothesis for 20% of the comparisons,

even though the nominal testing level is 5% (Table 2). Adjustment for serial correlation

reduces the rejection frequency to 15%. When temporal variability of half-series means is
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adjusted for, the null hypothesis is rejected for none of the 61 pairs of \control" units.

For comparisons in which one of the two units was disturbed, RIA rejects the null hy-

pothesis 30% of the time. Adjustment for serial correlation reduces the rejection frequency

slightly, and adjustment for temporal variability of half-series means results in rejections for

only 14{15% of the comparisons.

Figure 4 summarizes these results graphically. Obviously, adjustment for temporal vari-

ability of half-series means can substantially in
ate the P -values from RIA. The largest

disparities (upper left-hand corners of plots) occur when there are large di�erences among

the three half-series means used to calculate the temporal component of variation (control

before, control after, and treated before).

Conclusions

When applied to time series of responses from pairs of undisturbed ecological units, random-

ized intervention analysis done at the 5% level detected an association of the response with

a hypothetical intervention 20% of the time (Table 2). This indicates that RIA rejects the

null hypothesis much too often when there is no intervention e�ect. This rejection rate is

not that di�erent from the 30% frequency of positive results for paired time series in which

one of the units did receive an intervention.

There are many practical problems with the application of RIA and BACI analysis |

including the e�ects of serial correlation, the choice of transformation (if parametric tests are

used), and the possibility of delayed or transient e�ects of the intervention. Some of these

problems could be alleviated by more sophisticated statistical modeling of the time series

of between-unit di�erences (e.g., see Box and Tiao 1975). But, in my view, even the use of

better statistical models would not eliminate the key problem in the interpretation of BACI-

like analyses | namely, the unreasonableness of the assumption that the trajectories of the

response in the two units would have been exactly parallel in the absence of the intervention.
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The method presented by Murtaugh (2000) attempts to adjust for temporal variability of

the response trajectories in the two units, but it does so by assuming that a sample variance

based on the control-before, control-after and treated-before means is representative of the

variability of half-series means that one could expect within a particular unit. Consequently,

it will be very diÆcult to establish statistical signi�cance for any pair of units in which the

baseline mean reponses di�er substantially between units.

The challenge of obtaining eÆcient, unbiased estimates of the temporal variance compo-

nent resulted in very low power of the two-stage approach in simulations (Murtaugh 2000).

Ninety-three of the paired time series in the current study involved an intervention applied

to one of the units, but, of course, there is no way of knowing how many of these inter-

ventions had nonzero e�ects. Unless many of the interventions were without e�ect, the

14-15% rejection frequency of the two-stage approach is consistent with the low power seen

in simulations.

Proponents of BACI analysis and RIA might argue that concern with variability of re-

sponse trajectories within or across ecological units is misguided: \[I]mpact studies are

usually concerned with e�ects at a particular place and time, not with generalizations: they

are analagous to asking not whether smoking causes cancer but whether it caused a par-

ticular smoker's cancer" (Stewart-Oaten 1996). I would suggest that many users of BACI

analysis and RIA do not adhere to this strict interpretation of their results, and, in any

case, the conclusion of an association between the intervention and the response | even at

a particular time and place | depends on an untestable assumption about how the treated

unit would have behaved in the absence of the intervention. Whatever view one has of the

validity and appropriateness of BACI-like analyses, it is clear from the work described here

that the method results in many false positives, i.e., it very frequently detects associations

where none exist.

In my view, it is probably impossible to devise honest, powerful tests of the association
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of an intervention with the response in BACI designs, unless multiple ecological units can

be observed, as suggested by Underwood (1992, 1994). Since this sort of replication is

impracticable for units as large and unwieldy as those commonly studied with the BACI

approach (Carpenter 1990), it may be best to resist the temptation and/or the editorial

pressure to attempt statistical inference from such data. Instead, graphical displays, expert

opinion, and common sense can be summoned to make plausible interpretations of the paired

time series, and smaller-scale experiments in which replication is possible may be devised to

explore the relationships and mechanisms suggested by the larger-scale observations.
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Appendix I: Details of Two-Stage Intervention Analysis

The following approach is motivated and explained further in Murtaugh (2000).

Let �y1B , �y1A , �y2B and �y2A be the means of the observations in the control (1) and treated

(2) units, before (B) and after (A) the intervention time. Let n1 and n2 be the numbers of

pre- and post-intervention observation times, respectively, and let n = n1 + n2.

1. Estimate �2
 , the temporal variability of the \half-series means" within units.

(a) First, estimate �2, the variance of the observations around the four half-series

means:

�̂2 =
1

2n1 + 2n2 � 4

"
n1X
i=1

n
(y1(ti)� �y1B )

2 + (y2(ti)� �y2B )
2
o
+

nX
i=n1+1

n
(y1(ti)� �y1A )

2 + (y2(ti)� �y2A )
2
o35 : (2)

(b) Next, calculate

�̂2
 =
1

3

h
(�y1B�

=
y )2 + (�y1A�

=
y )2 + (�y2B�

=
y )2

i
�

�̂2

n=2
; (3)

where
=
y is the mean of the three half-series means. If �̂2
 is negative, set it to zero.

2. Estimate �, the variance-covariance matrix of the between-unit di�erences, using an

iterative approach. If X is an n�2 design matrix with a column of 1's and a column of

the values of I[t�;1)(ti) ; d = (d1; : : : ; dn)
0, with di = y2(ti)� y1(ti) ; and � = (�0 �1)

0,

then we can write

E (d j�1B ; �1A ; �2B ; �2A ) = X�

Var (d j�1B ; �1A ; �2B ; �2A ) = � : (4)

(a) In the �rst iteration, use �̂0 = �dB and �̂1 = �dA � �dB, where �dA and �dB are the

mean between-unit di�erences after and before the intervention, respectively. In

subsequent iterations, use the generalized least-squares estimates from (d), below.
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(b) From the time series of residuals, e = d�X�̂, estimate �d, the �rst-order autore-

gression coeÆcient, in the usual way (e.g., see Fuller 1996). If a test of �d = 0 is

nonsigni�cant, set �̂d equal to zero. Calculate �̂
2
d =

dVar (ei) � (1� �̂2d).

(c) Calculate

�̂ =
�̂2d

1� �̂2d

0BBBBBBBBB@

1 �̂d �2d : : : �n�1d

�d 1 �d : : : �n�2d

... : : :
...

�n�1
d �n�2

d : : : �d 1

1CCCCCCCCCA
(5)

(d) Calculate

�̂ = (X 0 �̂�1X)�1X 0 �̂�1d ; (6)

and repeat steps (a) through (c) if �̂ is not suÆciently close to its value from the

preceding iteration.

3. If Æ̂ � �dA � �dB is the estimate used in paired intervention analysis, calculate

dVar (Æ̂) = 4�̂2
 + a0 �̂ a ; (7)

where �̂2
 is from step 1, �̂ is from step 2, and a =
�
� 1

n1
: : : � 1

n1

1
n2

: : : 1
n2

�
0

. We

can then test the hypothesis that Æ = 0 by comparing the test statistic Æ̂=
qdVar(Æ̂) to

a td.f. distribution, where

d.f. = 2p+ (n� 2)(1� p) ; (8)

with p = 4�̂2
 =(4�̂
2

 + a0 �̂ a).
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Appendix II: Descriptions of the Data Sets

Following are descriptions of the data sets used in the analyses, including explanations

of the abbreviations used in Table 1.

A. Average concentrations of chlorophyll a (in �g L�1) in the top 4 m of seven unma-

nipulated study lakes in Wisconsin (AL = Allequash, BM = Big Muskellunge, CB =

Crystal Bog, CR = Crystal Lake, SP = Sparkling, TB = Trout Bog, TR = Trout

Lake). Following Carpenter et al. (1989), I did all pairwise comparisons of these \ref-

erence" lakes, using 1984 { 1986 data. Source: Chlorophyll a in North Temperate

Lakes Primary Study Lakes | Trout Lake Area, North Temperate Lakes Long Term

Ecological Research program (http://www.limnology.wisc.edu), NSF, J.J. Magnuson,

Center for Limnology, University of Wisconsin-Madison.

B. Non-equilibrated surface pH in the seven Wisconsin lakes listed in A, 1984 { 1986.

Source: Nutrient Data of North Temperate Lakes Primary Study Lakes | Trout Lake

Area, North Temperate Lakes Long Term Ecological Research program

(http://www.limnology.wisc.edu), NSF, C.J. Bowser, Center for Limnology, University

of Wisconsin-Madison.

C. Data from Paul Lake (PA; reference) and from Peter (PT) and Tuesday (TU) Lakes,

which received reciprocal transplants of �sh in the spring of 1985 (Carpenter et al.

1987). The responses are dry biomass of zooplankton (zoo) in g m�2; percent of

zooplankton biomass consisting of animals greater than 1 mm in length (pct); phyto-

plankton biovolume density (phyto) in units of 106 �3 per mL; and primary production

(mg C m�3 d�1). Sampling was done in the summers of 1984 and 1985: weekly for

zooplankton biomass and phytoplankton biovolume, daily for primary production.

D. Numbers of spiders caught per day per plot, from a study of the e�ect of deltamethrin

on a linyphiid spider population (Gerard et al. 1992). A randomized block design was
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used: in each of three blocks, one control plot (labeled 13, 24 or 32) was compared

to four or �ve other plots that received di�erent doses of deltamethrin on day 10 of

the 17-day experiment. Also included are all pairwise comparisons of the three control

plots.

E. Densities (individuals L�1) of copepods (cop), cladocerans (cld) and rotifers (rot) in

mesocosms in a study of e�ects of the insecticide Guthion, from Tables 6{8 of Giddings

et al. (1994). For each zooplankton type, there were two control mesocosms (labeled

0) and �ve pairs of treated mesocosms (labeled 1 through 5) that received various doses

of Guthion halfway through the experiment.

F. Numbers (per m2) of coho salmon (ch) and cutthroat trout (ct) in streams draining

three basins in the Alsea Watershed: a control basin (C), a patch-cut basin (T1), and

a clearcut basin (T2). These are annual estimates from before (1959 to 1965) and after

(1966 to 1974) the treatments. The original data were from Moring and Lantz (1975),

with recent corrections supplied by J. Dambacher (personal communication).

G. From the above study, mean maximum daily temperature in July (degrees C), for

streams from the control basin and the clearcut basin, 1959 to 1973 (Moring 1975).

H. Concentrations of Ca++ (in mg L�1) in streamwater from two watersheds in the Hub-

bard Brook Experimental Forest, one of which was clearcut at the end of 1965, from

Figure 9 of Likens et al. (1970). Analyses are done for the pre-intervention data only,

and for the entire set of data (June 1965 to May 1968).

I. Fish abundance at sites upstream and downstream of a power plant for seven years

before and seven years after the plant went into operation (Smith et al. 1993). These

data are from the east side of the river (Figures 1a and 1b in Smith et al. 1993).

J. Mean densities of the stone
y Isoperla in control streams and in streams under di
ubenzuron-

treated canopies (Hurd et al. 1996). Monthly sampling started in October 1989; the
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di
ubenzuron treatment was applied in May 1992.

K. Sodium concentrations (in ppm) in streams 
owing through two contiguous watersheds,

one of which was subjected to a complete burn (Davis 1989). These data span eight

months of pre-treatment monitoring and six months of post-treatment monitoring.

L. Numbers of white-tail rats caught in logged and unlogged sites in Queensland, Aus-

tralia (Crome et al. 1996). There are 11 pre-logging observations and 5 post-logging

observations, between September 1982 and December 1986.

M. Mean tree-ring chronologies from spruce stumps and trunks in two forest stands in

northern Quebec: one that survived a �re in 1568, and one nearby control stand

(Arseneault and Payette 1997). The rings in the data set correspond to the years from

1560 to 1584.



Appendix III: Technical Details

Below are some details about the analyses of the data sets.

1. When observation times were not identical between units, the times for the less-

observed unit were taken as the baseline, and response values in the other unit at

those times were obtained by linear interpolation.

2. In the application of two-stage intervention analysis to pairs of reference units, the

results depend on which unit is labeled the control and which is considered to have

received a hypothetical intervention at the median observation time. I always made

the choice that minimized the variance component due to time periods, providing a

conservative comparison to RIA (i.e., the expected rejection rate is higher than it would

be if the designation of manipulated vs. control units were random).

3. If the number of pre-intervention observation times (n1) was di�erent from the number

of post-intervention times (n2), I replaced n1 in Equation 3.2 of Murtaugh (2000) by

the average of n1 and n2 (see Appendix I).

4. In the analysis of the data from Reference C, where two years of observations were

separated by a long inter-annual gap, r was calculated as the weighted average of

estimates done separately for each year, and the covariance matrix used in two-stage

intervention analysis (see Murtaugh 2000 and Appendix I) was modi�ed to re
ect

independence of the two clusters of observations.



Figure Legends

Figure 1.

Frequency distribution of estimates of the �rst-order autoregression coeÆcient for the 154

time series of between-unit di�erences. Blackened areas represent estimates that are signi�-

cantly di�erent from zero (P < 0.05).

Figure 2.

Upper panel: time series of chlorophyll measurements from Allequash (AL) and Big Muskel-

lunge (BM) Lakes over a three-year period, from Reference A. Lower panel: time series of

between-lake di�erences, with means of the early and late observations shown by dashed

lines. The estimated �rst-order autoregression coeÆcient for the residuals from the constant

half-series means model is 0.47 (P = 0:001).

Figure 3.

Top panel: rotifer densities in two control mesocosms, from Reference E. Middle panel:

di�erences in densities between mesocosms, with half-series means superimposed. Bottom

panel: di�erences between log-transformed densities (with 1 added to the densities before

taking the logarithm).

Figure 4.

P -value from two-stage analysis with adjustment for temporal variability of half-series means

(but not for serial correlation) vs. P -value from RIA, for pairs of \control" units (top) and

for pairs in which one unit was manipulated (bottom). The dashed line indicates equality of

the two P -values.
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Inter- P -value
Ref. Comparison vention? n r RIA Two-stage

A AL-BM 0 47 0.47 0.232 0.709
AL-CB 0 45 0.05 0.069 0.376
AL-CR 0 49 0.45 0.348 0.823
AL-SP 0 49 0.61 0.466 0.810
AL-TB 0 49 0.09 0.007 0.427
AL-TR 0 48 0.49 0.638 0.875
BM-CB 0 46 0.10 0.104 0.539
BM-CR 0 48 0.43 0.655 0.775
BM-SP 0 48 0.54 0.602 0.595
BM-TB 0 47 0.09 0.021 0.576
BM-TR 0 48 0.39 0.272 0.253
CB-CR 0 47 0.07 0.081 0.561
CB-SP 0 46 0.03 0.072 0.532
CB-TB 0 46 0.19 0.877 0.886
CB-TR 0 46 0.06 0.060 0.503
CR-SP 0 51 0.69 0.487 0.730
CR-TB 0 49 0.05 0.016 0.585
CR-TR 0 51 0.28 0.198 0.752
SP-TB 0 49 0.11 0.016 0.562
SP-TR 0 50 0.40 0.354 0.353
TB-TR 0 49 0.08 0.013 0.546

B AL-BM 0 37 0.09 0.738 0.880
AL-CB 0 35 0.48 0.915 0.996
AL-CR 0 38 0.18 0.891 0.993
AL-SP 0 38 �0:02 0.541 0.542
AL-TB 0 38 0.48 0.221 0.961
AL-TR 0 37 �0:13 0.714 0.721
BM-CB 0 36 0.53 0.977 0.999
BM-CR 0 37 0.38 0.94 0.996
BM-SP 0 38 0.12 0.351 0.796
BM-TB 0 38 0.49 0.075 0.958
BM-TR 0 37 0.10 0.868 0.977

Table 1: Results of applying randomized intervention analysis and two-stage analysis without
adjustment for serial correlation to the 154 pairs of time series; n is the number of observation
times (pre- and post-intervention sample sizes are shown for pairs in which one unit received
an intervention), and r is the estimated �rst-order autoregression coeÆcient for the time
series of between-unit di�erences. Statistically signi�cant values of r and P -values less than
0.05 are in boldface. For some pairs of time series involving interventions, analyses were done
both on the full data set and on the pre-intervention data (mimicking two control series).



Table 1 (continued)

Inter- P -value
Ref. Comparison vention? n r RIA Two-stage

B CB-CR 0 36 0.36 0.324 0.946
CB-SP 0 36 0.24 0.341 0.977
CB-TB 0 37 0.19 0 0.593
CB-TR 0 35 0.52 0.696 0.989
CR-SP 0 37 �0:07 0.383 0.967
CR-TB 0 38 0.36 0.037 0.905
CR-TR 0 37 0.25 0.835 0.994
SP-TB 0 37 0.22 0.042 0.962
SP-TR 0 36 0.28 0.074 0.074
TB-TR 0 36 0.58 0.052 0.957

C zoo, PA-PT 1 14, 15 0.36 0.036 0.452
zoo, PA-TU 1 14, 15 0.13 0.002 0.398
zoo, PA-PT, pre 0 14 0.08 0.165 0.167
zoo, PA-TU, pre 0 14 �0:04 0.986 0.995
pct, PA-PT 1 14, 15 0.43 0.002 0.158
pct, PA-TU 1 14, 15 0.42 0.002 0.623
pct, PA-PT, pre 0 14 �0:17 0.045 0.210
pct, PA-TU, pre 0 14 �0:16 0.051 0.708
phyto, PA-PT 1 13, 13 0.41 0.302 0.259
phyto, PA-TU 1 13, 13 0.3 0.001 0.593
phyto, PA-PT, pre 0 13 0.25 0.717 0.686
phyto, PA-TU, pre 0 13 0.24 0.167 0.534
pp, PA-PT 1 42, 44 0.64 0 0.680
pp, PA-TU 1 42, 44 0.56 0.168 0.912
pp, PA-PT, pre 0 42 0.35 0.866 0.954
pp, PA-TU, pre 0 42 0.45 0.019 0.256

D 13-24 0 10, 7 �0:12 0.884 0.93
13-32 0 " �0:11 0.627 0.864
24-32 0 " �0:18 0.787 0.779
13-11 1 " �0:23 0.137 0.311
13-14 1 " �0:12 0.167 0.173
13-16 1 " 0.38 0.207 0.54
13-12 1 " �0:09 0 0.001

13-15 1 " 0.2 0.001 0

24-22 1 " �0:4 0.005 0.004

24-25 1 " �0:09 0.025 0.023

24-23 1 " �0:28 0 0

24-26 1 " �0:14 0 0.001

24-21 1 " �0:25 0 0.02



Table 1 (continued)

Inter- P -value
Ref. Comparison vention? n r RIA Two-stage

D 32-33 1 10, 7 0.1 0.007 0.009

32-31 1 " �0:34 0 0.054
32-34 1 " �0:32 0 0

32-35 1 " �0.02 0 0

E cop, 0-0 0 7, 7 0.2 0.122 0.612
cop, 0-1 1 " -0.25 0.801 0.938
cop, 0-1 1 " 0 0.258 0.625
cop, 0-2 1 " 0.02 0.949 0.965
cop, 0-2 1 " -0.64 0.878 0.96
cop, 0-3 1 " 0.34 0.090 0.539
cop, 0-3 1 " -0.44 0.594 0.871
cop, 0-4 1 " -0.3 0.445 0.645
cop, 0-4 1 " 0.06 0.015 0.492
cop, 0-5 1 " -0.18 0.021 0.212
cop, 0-5 1 " 0.01 0.037 0.359
cop, 0-1 1 " -0.26 0.349 0.766
cop, 0-1 1 " -0.1 0.67 0.867
cop, 0-2 1 " -0.01 0 0.681
cop, 0-2 1 " -0.46 0.287 0.662
cop, 0-3 1 " 0.35 0.273 0.709
cop, 0-3 1 " -0.49 0.627 0.817
cop, 0-4 1 " -0.45 0.820 0.871
cop, 0-4 1 " 0.24 0.172 0.655
cop, 0-5 1 " -0.30 0.013 0.163
cop, 0-5 1 " 0.1 0.117 0.408
cld, 0-0 0 " -0.35 0.613 0.474
cld, 0-1 1 " -0.07 0.412 0.761
cld, 0-1 1 " -0.3 0.968 1
cld, 0-2 1 " 0 0.119 0.66
cld, 0-2 1 " -0.19 0.592 0.842
cld, 0-3 1 " 0.08 0.604 0.794
cld, 0-3 1 " -0.16 0.052 0.494
cld, 0-4 1 " 0.15 0.897 0.951
cld, 0-4 1 " -0.16 0.833 0.833
cld, 0-5 1 " -0.01 0.108 0.633
cld, 0-5 1 " -0.19 0.733 0.439
cld, 0-1 1 " -0.36 0.484 0.419
cld, 0-1 1 " -0.33 0.316 0.257
cld, 0-2 1 " -0.47 0.907 0.913
cld, 0-2 1 " -0.36 0.526 0.398



Table 1 (continued)

Inter- P -value
Ref. Comparison vention? n r RIA Two-stage

E cld, 0-3 1 7, 7 -0.54 0.318 0.311
cld, 0-3 1 " 0.07 0.154 0.6
cld, 0-4 1 " -0.13 0.930 0.591
cld, 0-4 1 " -0.44 0.339 0.307
cld, 0-5 1 " -0.5 0.903 0.936
cld, 0-5 1 " -0.12 0.657 0.471
rot, 0-0 0 " �0.66 0.813 0.850
rot, 0-1 1 " �0.63 0.558 0.535
rot, 0-1 1 " -0.3 0.653 0.495
rot, 0-2 1 " �0.60 0.912 0.891
rot, 0-2 1 " �0.6 0.411 0.533
rot, 0-3 1 " 0.06 0.009 0.046

rot, 0-3 1 " -0.34 0.045 0.142
rot, 0-4 1 " -0.5 0.999 0.766
rot, 0-4 1 " -0.55 0.595 0.663
rot, 0-5 1 " �0.62 0.278 0.296
rot, 0-5 1 " -0.52 0.368 0.308
rot, 0-1 1 " -0.31 0.488 0.449
rot, 0-1 1 " -0.52 0.935 0.912
rot, 0-2 1 " -0.3 0.223 0.241
rot, 0-2 1 " -0.4 0.994 0.789
rot, 0-3 1 " �0.58 0.862 0.793
rot, 0-3 1 " -0.19 0.154 0.235
rot, 0-4 1 " -0.28 0.989 0.491
rot, 0-4 1 " -0.43 0.881 0.875
rot, 0-5 1 " -0.32 0.766 0.444
rot, 0-5 1 " -0.49 0.999 0.818

F ch, C-T1 1 7, 5 -0.1 0.39 0.699
ch, C-T2 1 7, 7 -0.17 0.314 0.303
ct, C-T1 1 4, 7 0.03 0.152 0.69
ct, C-T2 1 4, 9 -0.11 0.001 0.005

G 1 7, 8 0.32 0.007 0.007

H all 1 145 0.95 0 0
pre-int 0 29 0.01 0.025 0.79



Table 1 (continued)

Inter- P -value
Ref. Comparison vention? n r RIA Two-stage

I all 1 80 0.15 0.243 0.532
pre-int 0 56 0.16 0.675 0.684

J all 1 29 0.08 0.039 0.164
pre-int 0 18 0.05 0.669 0.684

K all 1 72 �0:06 0.096 0.130
pre-int 0 23 �0:11 0.958 0.473

L 1 16 -0.25 0.928 0.981

M all 1 25 0.80 0.192 0.323
pre-int 0 9 0.10 0.021 0.182

Number (and proportion) of
P -values less than 0.05

No. of Corr. &
Intervention? data sets RIA Corr. Means means

No 61 12 9 0 0
(0.20) (0.15) (0) (0)

Yes 93 28 26 14 13
(0.30) (0.28) (0.15) (0.14)

Table 2: Rejection frequencies for the four di�erent analysis methods. \Corr." indicates
adjustment for serial correlation of between-unit di�erences; \Means" indicates adjustment
for temporal variability of half-series means (see text).


