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Abstract: Fixed-width belt transects employed in surveys of irregular shaped regions will differ in length
and, therefore, in area. When estimating density from such a sample, the unequal transect areas must be
taken into account.A density estimator dividing the mean number of objects (e.g., plants or animals) per
transect by the mean transect area is recommended. An alternative estimator, the mean density per transect,
is applicable for equal-area transects but often has undesirable properties for unequal-area transects. The
recommended density estimator is identified as a ratio estimator, and its standard error is derived from ratio
estimation theory.
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INTRODUCTION

Quadrat sampling is a standard approach for esti-
mating density, numbers, biomass, and other charac-
teristics of a population (Mueller-Dombois 1974,
Greig-Smith 1983, Bonham 1989, Krebs 1989), and
belt or strip transects represent a special case of quad-
rat sampling. For sampling relatively rare organisms,
belt transects offer a practical, easy-to-implement sam-
pling protocol that may yield more precise estimates
than, for example, square meter quadrats. The general
problem of determining appropriate quadrat size and
shape has received much attention in ecology. No sin-
gle quadrat size or shape is universally best (Krebs
1989:64). A practical advantage of rectangular quad-
rats is ‘‘increased facility with which the quadrat can
be studied’’ (Kershaw 1973:32) including diminished
trampling of the vegetation and ease of dividing up the
quadrat for counting (Greig-Smith 1983:28). Belt tran-
sects offer enhanced precision if a gradient is present
and the transects are aligned parallel to this gradient
(Schreuder et al. 1993:294). Kershaw (1973:32),
Greig-Smith (1983:28), and Barbour et al. (1999:218)
similarly note the potential of smaller variance
achieved by rectangular quadrats relative to square
quadrats if the long axis of the rectangular plot is
placed parallel to the major environmental gradient. A

potential disadvantage of belt transects is that the pe-
rimeter-to-area ratio is high, requiring more decisions
on plot boundary or edge individuals compared to cir-
cular and square quadrats.

Descriptions of quadrat sampling typically focus on
equal-area quadrats. In practice, if fixed-width belt
transects are selected and the study region’s natural
shape is irregular rather than rectangular, then the belt
transects will not be equal length or equal area. For
example, suppose the objective is to estimate charac-
teristics of a population of rare plants found within a
riparian floodplain (Figure 1). These characteristics
may include the number and density of plants, seed
production and biomass per unit area, and number of
flowers per plant. In Figure 1, the sample transects are
located systematically along the stream and oriented
perpendicular to a common baseline. Once the starting
point of a sample transect is located, the field crew
traverses the complete transect. Extending the transects
the full width of the floodplain results in the transects
being unequal in length and area. At issue is how to
analyze the data resulting from the unequal-area tran-
sects shown in Figure 1. Two approaches to estimate
density may occur to practitioners. One is to estimate
density as a ratio estimator of the mean number of
plants per transect divided by the mean area per tran-
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Figure 1. Systematic sample of belt transects traversing an irregular-shaped region determined by a floodplain.

sect (or, equivalently, the total number of plants count-
ed divided by the total area sampled). Alternatively,
density could be calculated for each sampled transect
and then these individual transect densities averaged.
The primary purpose of this article is to justify the
ratio estimator as the more appropriate estimator.

ESTIMATING DENSITY

The following notation will be used. Let Y 5 total
number of objects in the population, A 5 total area of
the study region, and D 5 Y/A 5 density (e.g., number
of plants or animals per unit area). D, Y, and A are
parameters, and a census would reveal the value of
each parameter. One way to view such a census, and
at the same time to motivate the sampling protocol, is
to partition the region into N belt transects, with each
transect oriented perpendicular to a common baseline.
For each transect, define yu 5 number of objects in
transect u, and au 5 area of transect u. Then Y 5

A 5 au, and density isN NS y , Su51 u u51

N N

D 5 Y/A 5 y a , (1)O Ou u@
u51 u51

where denotes summation over all N transects.NSu51

Because resources are rarely available for a census,
we obtain a sample of n transects employing either a
simple random or systematic selection protocol. The
sample-based estimator of density is denoted D̂, and
the estimators of Y and A are denoted Ŷ and Â. The
density estimator is then

Ŷ Nȳ ȳ
D̂ 5 5 5 , (2)

Â Nā ā

where ȳ 5 sample mean number of objects per tran-
sect, and ā 5 sample mean transect area. D̂ is called
a ratio estimator because it is a ratio of two estimated
totals, Ŷ and Â (or equivalently, a ratio of two sample
means). The numerator Ŷ 5 Nȳ and denominator Â 5
Nā are unbiased estimators of the parameters Y and A.
D̂ is not an unbiased estimator of D, but the bias is
small if the number of sample transects, n, is large.
Särndal et al. (1992:251) suggest that bias is negligible
if n . 20, and Cochran (1977:sec. 6.8) provides de-
tailed theory on bias.

Estimating density based on ‘‘standardizing’’ indi-
vidual transects to account for unequal transect area
may be posed as an alternative to D̂. That is, each
transect is standardized to the number of objects on a
per-unit-area basis (e.g., plants per m2), du 5 yu/au, and
then these individual transect densities are averaged to
obtain d̄ 5 SS du/n, where SS indicates summation over
the sample transects. Comparing average density to the
ratio estimator raises the question of whether unequal
transect areas should be accounted for at the individual
transect level, as in d̄, or at the aggregate sample level,
as in D̂. The consistency criterion provides a statistical
basis for the decision.

STATISTICAL PROPERTIES OF THE DENSITY
ESTIMATORS

By definition, an estimator is consistent if it equals
the population parameter when the sample size, n,
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Figure 2. Plant locations and study region for Population
1 used in the simulations (sample transects are oriented per-
pendicular to the long axis of the figure).

equals the population size, N (Cochran 1977:21). In
practical terms, consistency ensures that we are esti-
mating the population parameter of interest. That is, if
a census of the target population were available and
we applied the sample-based estimation formula to the
census data, we would obtain the exact value of the
parameter. A rationale for recommending D̂ instead of
d̄ is that these estimators are consistent for different
parameters. D̂ is consistent for the parameter D, and d̄
is consistent for the parameter D̄ 5 du/N, theNSu51

mean density of the population of N transects (Appen-
dix A). Because density is defined as the total number
of plants per unit area, D 5 Y/A, D̄ is the preferred
estimator because it is consistent for D. Further, D
does not depend on the partition of the study region
into transects, whereas D̄ is dependent on this parti-
tion. That is, if the study region is partitioned differ-
ently by choosing a different transect width, the pa-
rameter D̄ may change, but D will remain the same.
Because the partition of the region into N transects is
a structure imposed by the sampling protocol and not
a characteristic of the population, the dependence of
D̄ on the partitioning argues against D̄ as a biologically
relevant parameter and accordingly against the use of
d̄ as an estimator of D. D and D̄ are the same if all N
transects are equal area, so d̄ and D̂ are equivalent if
transects are equal length. Consequently, standardizing
for transect area on an individual transect basis is jus-
tified for equal-area transects, but this standardization
does not generalize to the unequal-area case.

The estimated variance of D̂, denoted V̂(D̂), is de-
rived from standard ratio estimation theory. V̂(D̂) may
be computed via two algebraically equivalent forms,

21 N 2 n seˆ ˆV(D) 5 (Thompson 1992:61), (3)
21 2ā N n

where , or2 2ˆs 5 S (y 2 Da ) /(n 2 1)e S u u

(1 2 n/N)
2 2 2ˆ ˆ ˆ ˆV(D) 5 (s 1 D s 2 2Ds )y a ya2nā

(Cochran 1977: eqn. 6.13), (4)

where and are the sample variances of y and a,2 2s sy a

respectively, and

s 5 a y 2 nāȳ (n 2 1)Oya u u1 2@S

is the sample covariance between a and y. V̂(D̂) is an
approximation valid for large samples. A sample size
of 30 is usually sufficiently large to justify this ap-
proximation (Cochran 1977:153 and sec. 6.9). The ap-
proximation may be adequate for smaller sample sizes
(see next section) if the distribution of transect areas
is nearly symmetric or if the correlation between a and

y is close to 1. The standard error, ,ˆ ˆ ˆSE(D) 5 ÏV(D)
is used to construct a confidence interval for the pa-
rameter D via the formula

ˆ ˆD 6 t*SE(D) (5)

where t* is a percentile from the t-distribution with n
2 1 degrees of freedom. A numerical example is pre-
sented in Appendix B.

SIMULATION STUDY OF ESTIMATOR
PROPERTIES

Some simulation results illustrate properties of the
density estimators and the variance estimator of D̂.
Two populations representing different field scenarios
are investigated (Figures 2 and 3, Table 1). Population
1 has only two transect lengths (20 m and 40 m) , so
the coefficient of variation of transect area, CV(a), is
small (28%). The low density of plants in the center
region results in a low correlation between a and y (r
5 0.12). Population 2 has a higher correlation between
a and y (r 5 0.67), and, because of the greater vari-
ability in transect lengths, Population 2 has a higher
CV(a) of 57%.

The simulation results (Table 2) are based on 10,000
simple random samples of each sample size (n) from
each population. The estimates, D̂k, d̄k, and V̂(D̂k) are
calculated for each sample, where the subscript k de-
notes the kth sample in the simulation. For each sample
size and population, the simulation results are used to
compute the approximate bias of the estimator, D̂,

10,000

ˆ ˆBias(D) 5 D /10,000 2 D, (6)O k
k51

which measures the degree to which the estimator D̂
differs, on average over the possible samples, from the
parameter D. Relative bias, Bias(D̂)/D, is reported in
Table 2.

The variance of D̂ is approximated by the formula

10,000

2ˆ ˆ ˆV(D) 5 (D 2 E(D)) /10,000, (7)O k
k51
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Figure 3. Plant locations and study region for Population
2 used in the simulations (sample transects are oriented per-
pendicular to the horizontal axis).

Table 1. Description of the populations used in the simulation study.

Popn.

Size

(N)

Population Total

Y A

Coefficient of Variation (%)

y a Correlation
Density
D5Y/A

Average
Density

D̄

1
2

600
1000

7000
5050

5000
5050

86.2
79.9

28.3
57.2

0.12
0.67

1.40
1.00

1.50
1.13

where is the expected value10,000ˆ ˆE(D) 5 S D /10,000k51 k

of D̂. V(D̂) represents the true precision of the density
estimator. Because in the simulation study we know
the entire population, we can approximate V(D̂) close-
ly via simulation. In practice, V(D̂) is estimated from
the sample data using V̂(D̂). We also computed mean
square error (MSE),

2ˆ ˆ ˆMSE(D) 5 V(D) + [Bias(D)] , (8)

which combines bias and variance into a single sum-
mary measure. The estimator possessing the smaller
MSE is preferred. Root mean square error (RMSE),
the square root of MSE, re-scales MSE to units of
density (e.g., number per m2). The bias, variance, and
RMSE of d̄ are obtained using formulas (6), (7), and
(8), with D̂k replaced by d̄k, the average density com-
puted from sample k. To facilitate comparisons be-
tween D̂ and d̄, Table 2 shows the ratio of root mean
square errors, RMSE(d̄)/RMSE(D̂). When this ratio
exceeds 1, D̂ is preferred over d̄.

Lastly, we evaluated the bias of the variance esti-
mator V̂(D̂) and the properties of confidence intervals
for D constructed using V̂(D̂). Bias of V̂(D̂) is ap-
proximated by

10,000

ˆ ˆ ˆ ˆ ˆBias[V(D)] 5 V(D )/10,000 2 V(D). (9)O k
k51

Relative bias, Bias[V̂(D̂)]/V(D̂), is reported in Table 2
to scale bias by the quantity targeted for estimation,
V(D̂). Confidence interval coverage is determined by
computing a 95% confidence interval for D from each
sample k,

ˆ ˆD 6 t*SE(D ),k k (10)

and finding the proportion of samples in the simulation
for which D is contained in the confidence interval.
The resulting observed coverage should be close to the
95% nominal level.

Sampling theory reported for the ratio estimator as-
sumes large sample size, so these simulation results
are particularly useful to illustrate properties of the ra-
tio estimator and its estimated variance for the small
sample sizes sometimes employed in practice. Esti-
mator properties vary by population, so examining two
populations obviously does not exhaust the full range
of estimator behaviors. The simulation approach could
be applied to new populations constructed to represent
specific conditions expected in any given application.

RESULTS OF THE SIMULATION STUDY

The simulation results confirm the theoretical pre-
diction that the bias of D̂ is small. The absolute value
of the relative bias of D̂ is less than 2% (0.02) for all
sample sizes evaluated and less than 0.5% (0.005) for
all cases when n $ 15 (Table 2). As expected from
the consistency criterion, d̄ is not a good estimator of
D, and relative bias is much higher for d̄ than D̂ for
both populations. Because d̄ is consistent for D̄, the
relative bias of d̄ is approximately (D̄ 2 D)/D, so d̄
overestimates D in Populations 1 and 2 by about 7%
and 13%, respectively (for other populations, d̄ may
underestimate D). The bias of d̄ for these two popu-
lations is large enough to be of concern in practice.
Whereas sampling theory ensures that the bias of D̂
decreases as n increases, the bias of d̄ does not shrink
with increasing n.

The RMSE comparison of the estimators generally
favors D̂. For the small sample sizes, n 5 5 and n 5
10, d̄ has a slight advantage over D̂ for Population 1,
but for n $ 15 in Population 1 and all sample sizes in
Population 2, D̂ is the preferred estimator. The RMSE
advantage of D̂ is greater in Population 2 than Popu-
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Table 2. Properties of density estimators for simple random sampling of n transects from each of two populations (for each sample size,
the simulation results are based on 10,000 samples).

n

Relative Bias

d̄ D̂

Ratio of
Root Mean

Square Errors*

Relative
Bias of
V̂ (D̂)

Observed
Coverage

(Nominal 95%)

Population 1

5
10
15
20
25
30
50

0.077
0.077
0.067
0.073
0.070
0.072
0.069

0.017
0.011

20.001
0.004

20.001
0.002

20.002

0.971
0.990
1.002
1.022
1.039
1.057
1.113

20.068
20.026
20.025
20.033

0.020
20.006
20.009

90.8
91.6
91.7
92.8
93.8
93.6
93.9

Population 2

5
10
15
20
25
30
50

0.139
0.137
0.129
0.131
0.132
0.133
0.130

0.010
0.005
0.000
0.001
0.002
0.002
0.000

1.903
2.044
2.089
2.149
2.211
2.308
2.492

20.074
20.013
20.015
20.005
20.025
20.006
20.014

92.9
93.8
93.6
94.0
94.0
94.3
94.6

* Value shown is RMSE of d̄ divided by RMSE of D̂; ratios exceeding 1 are cases in which D̂ is preferable to d̄ when evaluated on this criterion.

lation 1 because of the higher correlation between a
and y in Population 2.

The variance estimator V̂(D̂) generally underesti-
mates the true variance, V(D̂), with the most severe
underestimation being the relative bias of 20.074
(27.4%) observed for n 5 5 of Population 2. For n $

10, the largest absolute value of relative bias is 3.3%,
and the relative bias of V̂(D̂) generally decreases as
sample size increases. The observed confidence inter-
val coverage is 92.8% or higher when n . 15 for Pop-
ulation 1 and 92.9% or higher for all sample sizes in
Population 2. Because V̂(D̂) underestimates variance,
the observed confidence interval coverage is below the
nominal 95% (i.e., the confidence intervals tend to be
too narrow), but as the sample size increases, coverage
approaches 95%. For the two populations shown, per-
formance is good even at these relatively small sample
sizes. Theory presented earlier suggests that good per-
formance is generally assured for sample sizes greater
than 30. For a highly skewed distribution of transect
areas and/or a low correlation between a and y, a larger
sample size may be needed for the variance approxi-
mation to work well. More detailed guidelines are dif-
ficult to specify, but again, simulation can be used to
evaluate empirically the variance approximation for
any hypothesized population one might expect to en-
counter in practice.

ESTIMATING OTHER POPULATION
CHARACTERISTICS

Suppose the objective is to estimate characteristics
such as number of flowers, biomass, or seed produc-
tion. These characteristics may be of interest in several
forms: 1) as population totals, 2) on a per-unit-area
basis, or 3) on a per-plant basis. The unequal transect
areas need not be incorporated in the first and third
cases, and ratio estimation is applicable to all three
cases.

First consider estimating a population total. Let zu

denote the value of the characteristic recorded on tran-
sect u (e.g., biomass) and Z 5 zu denote the pop-NSu51

ulation total. An unbiased estimator of Z is Ẑ 5 Nz̄,
with estimated variance

2 2ˆ ˆV(Z) 5 N (1 2 n/N)s /n,z (11)

where is the sample variance of z. Transect area, au,2sz

is not used in the formula for the estimated total, Ẑ. If
the total area of the study region, A, is known, a ratio
estimator of the population total, , may beˆ ˆ ˆZ 5 AZ/AR

more precise than the unbiased estimator Ẑ. The con-
dition under which ẐR is preferred is r . (1/2)CV(a)/
CV(z), where r is the correlation between y and z, and
CV(z) and CV(a) are the coefficients of variation for
z and a (Särndal et al. 1992:250).

When estimating characteristics on a per-unit-area
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basis, the ratio estimator approach used to estimate
density, D̂, is applicable. The estimator of the mean
per unit area is R̂ 5 Ẑ/Â 5 z̄/ā. The variance of R̂ is
estimated by (3), with D̂ replaced by R̂, and yu replaced
by zu.

To estimate characteristics on a per-plant basis (e.g.,
mean biomass per plant), a ratio estimator is used. For
example, if zu 5 biomass measured on transect u and
xu 5 number of objects observed in transect u, the
parameter representing mean biomass per plant is M
5 Z/X, where X 5 . Then the estimator of M isNS xu51 u

M̂ 5 Ẑ/X̂ 5 z̄/x̄, and the variance is estimated by equa-
tion (3) or (4) with D̂ replaced by M̂, yu replaced by
zu, and au replaced by xu. Transect area (au) is not di-
rectly incorporated in the ratio estimator M̂.

DISCUSSION

Assumptions

Few assumptions are required to justify the density
estimator D̂ or to derive its properties. Estimating den-
sity or other characteristics of a population within a
defined spatial region is a sampling problem in which
design-based inference is often invoked. Design-based
inference (Hansen et al. 1983) is the framework typi-
cally discussed in sampling texts (Cochran 1977, Särn-
dal et al. 1992, Thompson 1992, Schreuder et al.
1993). The attributes of the population elements are
viewed as fixed constants, not random variables (Särn-
dal et al. 1992:34), and variation is attributed to the
randomization of the sample selection protocol. Coch-
ran (1977:8) states that the mathematical form of the
frequency distribution of the measurements or obser-
vations obtained on the sampling units is not assumed
known, ‘‘so that the approach might be described as
model-free or distribution-free.’’ Similarly, Gregoire
(1998:1431) notes that design-based inference is ‘‘free
of any assumptions’’ about the statistical distribution
of the observed values. Consequently, the validity of
the ratio estimator and its variance estimator does not
require assuming that the variables measured are nor-
mally distributed, that each observation has equal var-
iance, or that objects are randomly distributed in space.
The assumption-free character of design-based infer-
ence extends to spatial autocorrelation. In design-based
inference, ‘‘spatial correlation is an irrelevant issue’’
(Gregoire 1998:1433) because no assumption of in-
dependent observations is invoked in the derivation of
estimators or their properties. De Gruijter and ter
Braak (1990) and Stehman and Overton (1996) pro-
vide additional discussion of spatial autocorrelation
and design-based inference.

Although a statistical model provides the underlying
rationale for the ratio estimator D̂, ‘‘The basic prop-
erties (approximate unbiasedness, validity of the vari-
ance formulas, etc.) are not dependent on whether the
model holds’’ (Särndal et al. 1992:227). The more
closely this statistical model represents the population
being sampled, the better the precision of the estima-
tor. However, even if the model fits poorly, the density
estimator is still consistent for D, and the variance and
confidence interval formulas derived for the ratio es-
timator still apply.

Simple Random versus Systematic Sampling

Transects may be selected via simple random or sys-
tematic sampling. The consistency property of D̂ holds
under either design, so the criteria for deciding be-
tween the two designs are ease of implementation, pre-
cision, and variance estimation. Advantages of system-
atic sampling are that it is easy to implement and often
results in better precision than simple random sam-
pling (Greig-Smith 1983). However, if the sample
transects are selected via a systematic design, then
even for large n, the variance estimator for D̂ may be
biased. Usually, the true systematic sampling variance
is smaller than the estimated variance obtained from
(3) or (4). Consequently, confidence intervals are
‘‘conservative’’ (i.e., too wide) and actual coverage is
higher than the specified nominal confidence level.
Whether the systematic sampling variance estimator is
in fact badly biased is rarely known with certainty in
a particular application. Therefore, if a variance ap-
proximation is considered unacceptable, systematic
sampling should not be chosen. For many applications,
a variance approximation is adequate, so avoiding sys-
tematic sampling because it does not allow unbiased
variance estimation is usually not warranted.

SUMMARY

Belt transects provide a sampling protocol that is
practical to implement in the field and results in pre-
cise estimates if the transects are oriented with their
long axis parallel to a strong environmental gradient.
Even if the precision advantage gained by employing
belt transects is small relative to alternative quadrat
sizes and shapes, easy implementation may translate
into greater area sampled per unit of time and, con-
sequently, enhanced precision. In those situations in
which belt transects are selected and the transects dif-
fer in area, a density estimator dividing the mean num-
ber of objects per transect by the mean transect area,
D̂, is recommended over the average of the individual
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transect densities, d̄. D̂ is statistically consistent for the
parameter representing population density, D, whereas
d̄ is not consistent for D. Recognizing D̂ as a ratio
estimator provides the link to standard sampling theory
and the derivation of the standard error and approxi-
mate bias of D̂. The standard error and confidence in-
terval formulas associated with D̂ were demonstrated
to perform well in the simulation study, even for rel-
atively small sample sizes. Similar good performance
for small sample sizes is not ensured for other popu-
lations, but the simulation approach provides a mech-
anism for evaluating other populations. Sampling the-
ory justifies use of the ratio estimator and its variance
estimator for larger sample sizes.
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Appendix A: Consistency of the
Density Estimator, D̂

The proposition that D̂ 5 Ŷ/Â is consistent for the
parameter D 5 Y/A is established by noting that for a
census (n 5 N), Ŷ 5 Nȳ 5 N yu/N 5 Y, and Â 5NSu51

A (for the same reason that Ŷ 5 Y) . Consequently, D̂
5 D when the sample size equals N, satisfying the
definition of a consistent estimator. If d̄ is computed
from a census, we obtain d̄ 5 du/N 5 D̄, estab-NSu51

lishing d̄ as consistent for D̄. d̄ is not consistent for D
except when D̄ 5 D (e.g., transect areas are equal).

Appendix B: Numerical Example

To illustrate application of the formulas for esti-
mating density and the associated standard error, we
use sample data from a monitoring study of flowering
pale white larkspur (Delphinium leucophaeum
(Greene)), a rare plant locally abundant along the Wil-
lamette River near Portland, Oregon. The region de-
fining the spatial boundary of this population extended
from the river to an abrupt forest edge. Sample tran-
sects were oriented perpendicular to the river, and the
transects differed in length because the distance from
the river to the forest edge varied depending on the
transect starting location. The study region can be par-
titioned into N 5 150 transects each 1 m wide. A sam-
ple of n 5 20 transects was selected, and yu 5 number
of plants and au 5 area (m2) was recorded for each
sampled transect, u (Table 3).

For this sample, the estimated density is D̂ 5 ȳ/ā 5
21.45/28.395 5 0.7554. To estimate the variance of D̂,
create the column eu 5 yu 2 D̂au, and then compute

5 SS (yu 2 2 1) 5 7908.975/19 5 416.262.2 2ˆs Da ) /(ne u

Substituting into equation (3), the estimated variance
is then

21 N 2 n s 1 150 2 20 416.262eˆ ˆV(D) 5 5
2 21 2 1 2ā N n 28.395 150 20

5 0.0224,

and the standard error of ˆ ˆD is SE(D) 5 Ï0.0224 5
. Equivalently, we could compute the estimated0.1496

variance using equation (4). The required covariance
term is

s 5 a y 2 nāȳ (n 2 1)Oya u u1 2@S

5 [13789.30 2 20(28.395)(21.45)]/19

5 84.623, and
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Table 3. Sample data for n 5 20, 1 m wide belt transects in a
monitoring study of pale white larkspur.

Transect
(u) yu au eu 5 yu 2 D̂au auyu

1
2
3
4
5

0
22
1

12
4

22.0
27.0
33.0
38.4
41.0

216.6188
1.6042

223.9282
217.0074
226.9714

0.0
594.0
33.0

460.8
164.0

6
7
8
9

10

21
77
27
4

23

45.0
34.0
34.0
41.0
31.0

212.9930
51.3164
1.3164

226.9714
20.4174

945.0
2618.0
918.0
164.0
713.0

11
12
13
14
15

19
63
55
39
17

37.0
42.0
30.5
30.0
27.0

28.9498
31.2732
31.9603
16.3380

23.3958

703.0
2646.0
1677.5
1170.0
459.0

16
17
18
19
20

7
18
3

12
5

3.0
13.0
12.0
14.0
13.0

4.7338
8.1798

26.0648
1.4244

24.8202

21.0
234.0
36.0

168.0
65.0

The summary statistics needed to compute the estimates are: ȳ 5 21.45,
s 5 463.3132, SS auyu 5 13789.30, ā 5 28.395, s 5 141.5942.2 2

y a

(1 2 n/N)
2 2 2ˆ ˆ ˆ ˆV(D) 5 (s 1 D s 2 2Ds )y a ya2nā

(1 2 20/150)
25 [463.3132 1 0.7554 (141.5942)

220(28.395)

2 2(0.7554)(84.623)]

5 0.0224.

The total area of the study region is A 5 5897 m2, so
the estimated population size is D̂A 5 0.7554(5897)
5 4454.6 plants with a standard error of A*SE(D̂) 5
5897(0.1496) 5 882.2.
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