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[1] This paper develops a geomorphological theory of tidal basin response (tidal
instantaneous geomorphologic elementary response, or TIGER) to describe specific
characteristics of tidal channel hydrodynamics. On the basis of the instantaneous unit
hydrograph approach, this framework relates the hydrodynamics of tidal watersheds to the
geomorphic structure of salt marshes and, specifically, to the distance traveled by water
particles within the channel network and on the marsh surface. The possibility of
determining the water fluxes from observations of geomorphic features is an appealing
approach to the study of tidally driven flow rates. Our formulation paves the way to the
application of recent results on the geomorphic structure of salt marshes and tidal
networks to the determination of marsh creek hydrology. A case study shows how the
asymmetry in the stage-velocity relation and the existence of velocity surges typical of the
tidal hydrographs can be explained as an effect of the delay in the propagation of the tidal
signal within the marsh area.
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1. Introduction

[2] Salt marshes are important transitional areas between
terrestrial and marine environments where exchanges of
sediments and nutrients are modulated by tidal oscillations
[Fagherazzi et al., 2004]. Most of the water, sediment, and
nutrient fluxes between marshes and the ocean take place
through systems of low-order networks of tidal creeks,
which dissect the salt marsh landscape providing preferen-
tial pathways for marsh flooding and drainage during the
tidal cycle. Because the transport of sediments and solutes is
driven by water flow, the study of water exchange in creek-
marsh systems is fundamental to the understanding of the
biogeochemistry and sediment budget of tidal basins. Some
of the solutes transported by water undergo chemical
reactions and are transformed into different chemical com-
pounds during their residence within the marsh-tidal creek
system. Thus the study of the biogeochemistry of these
environments requires also an assessment of the residence
times and their distribution within the tidal basin. The
hydrology of tidal basins is typically investigated through
rather complex two- or three-dimensional hydrodynamic
models, which solve the mass and momentum balance
equations in a spatially explicit domain [e.g., Carniello et
al., 2005; D’Alpaos and Defina, 2007; Lawrence et al.,
2004]. These models provide a detailed representation of the
hydrodynamics of the system at the expenses of the com-

plexity associated with numerical algorithms, computational
times, and the estimation of a number of parameters. This
complexity may prevent the direct assessment of the main
geomorphic controls on the hydrologic response of tidal
watersheds, particularly in the case of long-term computa-
tionally intensive analyses. While in fluvial systems the
relation between form and (hydrologic) function has been
established by elegant hydrological and geomorphological
theories [Gupta et al., 1980; Rodriguez-Iturbe and Valdes,
1979; Rinaldo et al., 1991], the hydrodynamic response of
tidal basins has never been explicitly related to the geomor-
phology of these systems in the context of an analysis of
hydrologic transport by travel times [e.g., Woldenburg,
1972; French and Stoddart, 1992; Zeff, 1999].
[3] The lack of a simplified framework for the study of

water flow in tidal creeks is a major limitation to the
understanding of salt marsh hydrology and biogeochemis-
try. Because tidal basins are seldom instrumented for stream
gauging, the possibility of determining the water fluxes
from observations of geomorphic features is an appealing
approach to the study of tidally driven flows.
[4] This paper will capitalize on the existing literature on

geomorphological theories of the hydrologic response in
fluvial networks [Rodriguez-Iturbe and Valdes, 1979; Gupta
et al., 1980; Rodriguez-Iturbe and Rinaldo, 1997] to devel-
op a minimalist framework for the study of the response of
marsh–tidal creek systems forced by the tidal cycle. This
framework will be used to investigate some fundamental
features of the basin response, including the geomorphic
controls, the ability to infer morphological properties of the
marsh-creek system from flow records, and the possible
existence of hysteresis in the stage-discharge relation.
[5] Field studies [Myrick and Leopold, 1963; Pethick,

1972; Bayliss-Smith et al., 1978; French and Stoddart,
1992] have reported a general tendency for an hysteresis
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in the stage-discharge (or velocity) relation in salt marsh
channels; that is, for a same stage value the discharge can be
different in magnitude during the ebb and flood phases of
the tidal cycle.
[6] All these studies point out two important character-

istics of tidal flow in salt marshes: (1) Tidal velocities show
a characteristic series of surges during flood and ebb; the
velocity is low when the water is confined in the channel
during a tidal cycle, but it largely increases, producing a
surge, when the marsh platform is inundated; and (2) the
velocity surge is asymmetric between flood and ebb;
the velocity peak during flood occurs for water levels above
the marsh surface, whereas during ebb the velocity peaks
when the water is below the marsh surface (Figure 1).
[7] Boon [1975] proposed a simple model based on the

continuity equation to simulate the formation of velocity
surges in salt marsh channels and compared his results with
records of tidal discharge taken at the inlet of a salt marsh
drainage system near Wachapreague, Virginia. Boon’s
[1975] model expresses the discharge Q through the channel
mouth as

Q ¼ S
dh

dt
; ð1Þ

where h is the stage, dh/dt is rate of change in tidal
elevation, and S is the inundated surface at stage h. The
model assumes that the channel is frictionless, the water
surface is horizontal, all the water enters or leaves the marsh
drainage basin through the channel, and both wind stress
and the effect of inertial forces are negligible (i.e., the
celerity of the tidal wave is infinite). Under these
assumptions the right-hand side of (1) simply represents
the tidal prism entering or leaving the channel cross section.
Therefore, in this model [Boon, 1975], the drainage basin
morphology, expressed through the hypsometric curve S(h)
determines the velocity surges. The results of this simple
tidal model match, in first approximation, the discharges
measured in the tidal creek.
[8] Equation (1) provides a simple and elegant explana-

tion for velocity surges in salt marsh creeks: The discharge

increases during overbank flow, because more water has to
be convoyed in the channel to cover a larger area when the
marsh is inundated during flood. Similarly, during ebb, a
drop in tidal elevation convoys more water out of the
channel when the marshes are inundated because a larger
area needs to be drained. Nevertheless, equation (1) is
unable to capture the asymmetry of the velocity surges,
since they both occur when the right-hand side of (1)
reaches its maximum value, i.e., when the tidal elevation
is just above the marsh platform level.
[9] To improve this model, Pethick [1980] included in the

formulation an asymmetric tide and a network of channels
that branch out in the salt marsh. Model simulations show
that shallow-water asymmetric tides are responsible for
velocity asymmetry, whereas the branching of the channel
network determines the position and strength of the velocity
surges.
[10] Healey et al. [1981] challenged these two models on

the basis of field data showing that the asymmetry of the
time-stage curve does not occur for all tides and that the
water surface does not remain horizontal during the flood
and ebb cycles. However, the slope of the water surface in
intertidal basins whose dimensions are much smaller than
the tide wavelength has only a second-order effect on the
continuity equation [Fagherazzi, 2002; Fagherazzi et al.,
2003]. Thus equation (1) still captures the basic character-
istics of the system.
[11] This paper develops a geomorphological theory of

tidal basin response that overcomes the limitations of
previous approaches [Boon, 1975]. The asymmetry in flow
hydrodynamics will be explained as an effect of the delay in
the propagation of the tidal signal within the marsh area.

2. The Tidal Instantaneous Geomorphologic
Elementary Response Model

[12] The main limitation of the continuity model pre-
sented by Boon [1975] is the implicit assumption that the
tide propagates instantaneously across the marsh system.
[13] As a result, in Boon’s [1975] model an increase or

decrease in tidal elevation leads to an instantaneous increase
or decrease in the tidal flow at the channel mouth, since Q
increases with dh/dt (equation (1)). Thus during flood all the
water particles entering the marsh system from the creek
move instantaneously to the marsh (provided that h exceeds
the marsh elevation), thereby increasing the water level
across the marsh to perfectly match the tidal level. Similarly,
during ebb, all the particles move instantaneously from the
marsh platform to the channel mouth to adjust without delay
to the decreasing tidal level. A more realistic approach
would account for the travel time of each water particle
from the channel mouth to every location within the marsh
platform. In fact, during flood the peak velocity in the creek
is delayed with respect to the flooding of the marsh
platform, since it takes a finite period of time for the creek
to be affected by the flooding of the marsh surface.
Similarly, during ebb, the discharge peak is delayed with
respect to the drainage of the marsh surface, due to the finite
period of time the water particles take to move from each
point of the flooded surface of the marsh to the mouth of the
tidal creek.
[14] In this study we draw on the geomorphologic theory

of the hydrologic response for fluvial systems to relate the

Figure 1. Stage-discharge relationship for a tidal marsh
creek in Warham, UK. Data are derived from Bayliss-Smith
et al. [1978], Pethick [1980], and Healey et al. [1981].
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distribution of travel times to the asymmetry of tidal flow in
salt marsh creeks. The distribution of travel times will be
then computed from the geomorphic structure of the tidal
marsh. To this end, we will focus on ebb and flood
conditions separately.

2.1. Ebb Flow From the Marshes to the Tidal Creeks

[15] We first consider the case of ebb flow and assume
that the system is initially at a steady state, i.e., the marshes
are partly flooded and the water surface is horizontal with
elevation h0. At time t = 0 the water level in the creek at the
outlet O of the tidal basin drops by dh (i.e., from h0 to h0–
dh) and water starts flowing from the marshes into the
nearby creeks, and then through the creek network toward
O. Different parts of the tidal basin contribute to the flow at
the outlet O at different times depending on their ‘‘hydraulic
distance’’ from O. This situation is similar to the case of
water transport in a river basin receiving an effective
precipitation dh uniformly distributed across the basin, in
that all rain water reaching the basin collects in the channel
network and is delivered to only one outlet point.
[16] The relation existing in river basins between the

hydrograph, Q(t), measured at the outlet and uniform
rainfall inputs has been often investigated using the linear
theory of the hydrologic response. This theory postulates
that it is possible to express the hydrograph generated by a
given rainstorm as the sum of the basin responses to a
sequence of rainfall inputs occurring in the course of the
rainstorm. This framework has led to the theory of the unit
hydrograph [Sherman, 1932], which expresses the storm-
flow hydrograph as a function of storm hyetograph and
basin properties, with the latter being expressed by a
response function, known as unit hydrograph (UH). In this
study we will refer to the concept of instantaneous UH
(IUH), defined as the direct runoff hydrograph resulting
from an instantaneous rainfall excess uniformly distributed
over the drainage area [e.g., Chow et al., 1988]. The IUH
theory invokes the linearity of the system to express the
response to a rainfall pulse dP as dQ(t) = dP IUH(t). If we
assume that the IUH is an invariant property of the basin
(i.e., the function IUH(t) does not change in the course of
the event nor from event to event), the response to an
effective storm hyetograph, I(t), can be expressed as the
integral sum of the pulse responses dQ(t)

Q tð Þ ¼
Z t

0

I tð ÞIUH t � tð Þdt; ð2Þ

where I(t) represents the rainfall intensity, I(t) = dP(t)/dt,
with P being the rainfall depth.
[17] The basin-specific response function IUH(t) has

been related to the geomorphic structure of the watershed
[Rodriguez-Iturbe and Valdes, 1979] and interpreted as the
by-product of the basin area times the probability density
function f(t) of travel times from any point in the basin to
the outlet [Gupta et al., 1980]. The travel time distribution
can be directly related to the geomorphic characteristic of
the watershed (section 2.3).
[18] The application of this framework to ebb flow in

tidal basins is relatively straightforward. In this case a
decrease dh in water depth at the outlet corresponds to a

depth dh of water excess across the flooded part of the
marsh. Thus in equation (2) the storm hyetograph I(t) can
be simply replaced by the rate dh/dt of tidal stage decrease
at the outlet; that is, the hyetograph is substituted with the
volumetric input of water driven by tidal oscillations
(equation (1)). Moreover, in this case the impulse response
function IUH is again the product of the basin area S times
the travel time distribution f(t) of a unit amount of water
particles (uniformly distributed in space) instantaneously
leaving the watershed. A major difference with respect to
river basins is that in creek-marsh systems subjected to tidal
fluctuations both the contributing area S and the distribution
of residence times depend on the spatial extent of the
flooded marshes, which, in turn, depends on the stage
h (and time, if propagation effects are accounted for). Thus
the convolution integral in (2) becomes

Q ¼
Z t

0

S hð Þ dh
dt

fh t � tð Þdt; ð3Þ

where S(h) is the hypsometric curve and fh(t) is the state-
dependent travel time distribution. Because of this state-
dependence, this IUH is in general noninvariant. Section 3
will discuss the dependence of fh(t) on the geomorphic
features of the tidal basin and present suitable methods for
its calculation.
[19] The proposed framework is based on a few simpli-

fying assumptions: (1) The distributions of travel times
from each marsh site are assumed to be independent,
despite their dependence on the spatially correlated water
surface. Similar assumptions were used in the application
of the transport theory by travel times to river basins;
(2) the IUH will be expressed as a function of the state of
the system only through the hypsometric curve, which
provides the flooded area as a function of stage. However,
the dependence of the flow velocity on the water depth
over the marsh and on its spatial gradients will not be
accounted for. This effect would further contribute to the
state dependence of the proability distribution of travel
times; (3) the probability distribution of travel time will be
calculated assuming that for any given stage h, all points
in the flooded area, S(h), are hydraulically connected to
the outlet (i.e., with no isolated areas).

2.2. Flood of the Salt Marshes

[20] During the flood phase of the tidal cycle any
increment dh in stage at the inlet O is associated with
a water flow into the tidal watershed, and with the
consequent flooding of the marshes (i.e., increase in water
depth and extent of flooded area). The relation between
dh and the rate of flow through the inlet depends on the
hypsometry and the planar geometry of the creek-marsh
landscape.
[21] We assume that the system is linear and that the

hydrograph generated by increasing water levels at the inlet
can be expressed as a convolution integral of the responses to
pulse increments dh, similarly to the approach described in
the previous section for ebb flow conditions (equation (2)).
In this case the instantaneous response function IUH is
defined as the hydrograph generated at the inlet by a unit
increment in stage with the water surface being initially
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horizontal across the flooded portion in the watershed. It can
be shown that even in this case the IUH(t) can be expressed
as the by-product of the flooded area, S(h), by the proba-
bility distribution of travel times of water particles moving
from the inlet to all points of the watersheds that have been
reached by the wetting front. This fact can be shown
following an approach similar to the proof developed by
Gupta et al. [1980]. In fact, at any time t the continuity
equation for the watershed can be expressed as

dVol tð Þ
dt

¼ Qin tð Þ � Qout tð Þ; ð4Þ

where Vol is the water volume stored in the watershed,
while Qin and Qout are the inflow and outflow rates through
the boundaries of the watershed. In the course of the flood
phase of the tidal oscillation we have that Qout = 0. An
instantaneous increase at time t0 = 0 in the water level at the
inlet from h0 to h0 + dh is associated with a storage volume,
Vol(t) = dh ht(h)S(h), with ht(h) being the fraction of the area
S(h) that has been reached at time t by water particles
entering the inlet at time t0. We follow Gupta et al. [1980]
and express ht(h) using a discrete representation of the
watershed as a finite set of sites i. We also assume that the
flooding of any site i is independent of the state of the other
sites existing within the watershed. Thus, if Ti is the
(random) travel time of a water particle moving from the
inlet to site i, the times Ti (i = 1,2,. . .n) can be assumed to be
a set of independent and identically distributed random
variables, with n being the number of sites existing within
the area S(h). The fraction ht(h) of the flooded area reached
by the tidal wave at time t is then proportional to the number
of sites i having travel time Ti � t, i.e., to the probability
Ph[Ti � t] that Ti � t. Thus the storage volume is

Volh tð Þ ¼ dhS hð ÞPh Ti � t½ �; ð5Þ

where the subscript h stresses the fact that the fraction of
flooded area is calculated with respect to the ‘‘wettable
area’’ S(h), when the stage is h. S(h) depends on the
geomorphic features of the catchments and is usually
expressed by the hypsometric curve. The instantaneous unit
response function for flood conditions can be determined
using equations (4) and (5) with dh = 1 (unit increase in
water level), Qout = 0, and neglecting changes in the spatial
extent of the wetted areas (i.e., in S(h) and n),

IUH ¼ S hð Þfh tð Þ; ð6Þ

with fh(t) representing the probability density function of
travel times when the stage is h. Equation (6) indicates that
the hydrologic response of a tidal basin can be expressed
with (3) as a function of the travel time distribution both in
the case of ebb and of flood flow.

2.3. Travel Time Distribution

[22] Sections 2.1 and 2.2 indicate that both flood and
ebb flows depend on the travel time distribution, fh(t). In
what follows we will investigate the properties of fh(t)
and relate them to the geomorphic features of the tidal
basin. To this end, we assume that fh(t) depends only on
the stage h and not also on the flow direction (i.e., ebb or

flood flow). In other words, we postulate that both the
travel velocities and the travel distances, xi, between any
point i in the watershed and the inlet/outlet O are
independent of the flow direction. However, because
wetting and drying processes may proceed at different
velocities, this framework can be easily generalized using
in the calculation of fh(t) (equations (7) and (9)) different
velocity values during flood and ebb. As noted, we will
also assume that the propagation of water particles along
the drainage/flood path, gi, connecting i to O is indepen-
dent of the flow conditions along other paths, and that the
hydraulic distance xi is the only geomorphic attribute of
gi affecting the distribution of the travel time Ti associated
with the path gi. Thus the distribution of travel times for
the whole basin can be calculated as the travel time
distribution f(tjx) for paths of length x, integrated over
the whole distribution of the path lengths existing within
the basin

fh tð Þ ¼
ZL
0

Wh xð Þf tjxð Þdx; ð7Þ

where L is the length of the longest path, while Wh(x) is the
path length distribution calculated considering all sites
existing within the area S(h). Known as ‘‘geomorphologic
width function’’ [Shreve, 1969; Kirkby, 1986], Wh(x) is an
empirical function synthesizing the major geomorphic
controls on the flooding and drainage of the marsh-creek
system. Notice how the subscript h denotes the dependence
of the width function on the stage.
[23] In what follows we will discuss two models for the

travel time distribution f(tjx) conditional on the path length
x. The simplest model of hydrologic transport along a
pathway of length x assumes that the travel velocity V is
constant along the path and that the travel time is a
deterministic variable, t = x/V. In this case the distribution
of travel times along the path of length x is

f tjxð Þ ¼ d t � x

V

� �
; ð8Þ

with d( ) being the Dirac’s delta function.
[24] Alternatively, we can assume that because of the

randomness inherent to the processes of water transport,
travel times are random variables associated with a
continuous random walk. The resulting stochastic dynam-
ics can be modeled as a Wiener’s diffusion process [e.g.,
Cox and Miller, 1965] superimposed to the mean flow,
consistently with the parabolic (or diffusive) wave models
of de Saint-Venant equations [Rodriguez-Iturbe and
Rinaldo, 1997]. The distribution of travel times along a
hydraulic path of length x can be determined as solution
of a backward Kolmogorov problem [e.g., Cox and
Miller, 1965] associated with the Fokker-Plank equation
with suitable boundary conditions [Mesa and Mifflin,
1986],

f tjxð Þ ¼ xffiffiffiffiffiffiffiffiffiffiffiffi
4pDt3

p exp � x� Vtð Þ2

4Dt

" #
; ð9Þ

with D being the coefficient of hydrodynamic dispersion.
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Thus this framework recognizes that the hydrologic
transport is determined both by advection and hydrody-
namic dispersion.

2.4. Effect of Heterogeneity in the Velocity Field

[25] Equations (8)–(9) assume that water moves be-
tween the outlet/inlet O and any point i within the basin
in a uniform flow with a spatially homogeneous average
velocity. This assumption is quite unrealistic, particularly
when we observe that part of this path is along the tidal
creek network (i.e., with faster and deeper flow), while
the remaining part of the path is over the inundated
marshes (i.e., with slower and shallower flow). Moreover
on the marsh surface the flow velocity is further reduced
by vegetation drag [Temmerman et al., 2005a]. We notice
that the separation in the velocity scale existing between
creeks and marshes resembles the difference observed
between hillslopes and channels in river basins. Thus
we follow van der Tak and Bras [1990] and D’Odorico
and Rigon [2003], and use two separate velocities, Vmarsh

and Vchannel, for the marsh and creek portion of the
hydraulic path, respectively.
[26] If tmarsh and tchannel are the travel times through the

marsh and creek, and xmarsh and xchannel are the
corresponding ‘‘hydraulic lengths,’’ the travel time between
i and O is t = tmarsh + tchannel, while the ‘‘hydraulic distance’’
is x = xmarsh + xchannel. The probability distributions,
fmarsh(tmarshjxmarsh) and fchannel(tchanneljxchannel), of tmarsh
and tchannel can be still calculated either with equation
(8) or (9), provided that the velocity V is replaced with
the corresponding velocity, Vmarsh or Vchannel, and that
the dispersion coefficient D assumes the values Dmarsh

or Dchannel, corresponding to marsh and creek flow,
respectively.
[27] A simplified approach accounting for the different

velocities in the creek and marsh portion of the flow path
is based on the use in equation (7) of the rescaled width
function Wh(x

0), defined using rescaled travel distances x0 =
xchannel + r xmarsh, with r = Vchannel/Vmarsh [D’Odorico and
Rigon, 2003]. In this case the travel time distributions
f(tjx0) are calculated assuming that the whole rescaled

distance x0 is traveled at the same velocity, Vchannel, and
the kinematic-wave model of water transport within a
hydraulic path can be calculated using the residence times
expressed as

t ¼ x0

Vchannel

: ð10Þ

[28] Unlike the case of fluvial watersheds where the flow
path follows the topographic steepest gradient, in salt
marshes the water flows along gradients of water surface.
The flow path on the marsh surface can then be computed
following the methodology outlined by Rinaldo et al.
[1999b]. For a salt marsh of small dimensions the water
surface at each instant of the tidal cycle can be approximat-
ed with a Poisson equation:

r2
h ¼

L
z20

@h0
@t

; ð11Þ

where h is the elevation of the water surface above or below
the average water elevation within the salt marsh, L is a
friction coefficient, h0 is the tidal elevation at the inlet, and
z0 is the average water depth on the marsh surface.
Furthermore, if we assume that the propagation of the tide
within the channel network is instantaneous with respect to
the propagation on the marsh surface, we can solve equation
(11) only for the unchannalized salt marsh area assuming as
a boundary condition a constant elevation equal to h0 in the
channels and bordering ocean and a no-flux condition at
the boundary between salt marsh and mainland. During ebb
the flow direction can be then computed along the surface h
following the steepest descent gradient until a tidal channel
is reached. Once the particle is in the channel, it will travel
along the channel network until the channel mouth.
Similarly, during flood the particle will first move along
the channel network and then proceed along the marsh
platform following the same path utilized during ebb, since
equation (11) yields identical results for increasing or
decreasing water elevations.

3. A Case Study

[29] Our model is tested with published data for a tidal
creek in the upper marsh at Warham and Stiffkey, North
Norfolk, England (Figure 2) [Bayliss-Smith et al., 1978;
Pethick, 1980; Healey et al., 1981]. The Warham marshes
are part of a continuous system which extends along 35 km
of coast, from Holme to the west to Cley to the east. The
marshes are of the open coast type, partially protected by
extensive intertidal sand flats, spits, and barrier islands, and
unaffected by freshwater drainage from the land [Bayliss-
Smith et al., 1978].
[30] The upper and lower marshes are separated from

each other and from the outer flats by transverse creeks. The
lower marsh at Warham is drained by a dense network of
channels and is vegetated largely with Aster tripolium and
Salicornia. The upper marsh exhibits a stable drainage
pattern characteristic of established marsh areas. The marsh
is drained by fourth-order creek systems, the main channel
being over 20 m wide and 2 m deep [Bayliss-Smith et al.,
1978]. In the headwaters, the creeks are mainly 0.5–1.5 m

Figure 2. Location of the creek cross section studied by
Bayliss-Smith et al. [1978], Pethick [1979], and Healey et
al. [1981] (courtesy GoogleEarth).
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deep. Mean tidal ranges on the Norfolk coast are 2–3 m for
neap tides and 5–6 m for spring tide; the area is vulnerable
to storm surges.
[31] The velocity and stage data for three tidal surges

(2 December 1975, 8 March 1977, and 10 March 1977)
were derived from the measurements of Bayliss-Smith et al.
[1978] and Healey et al. [1981] (Figure 3a). The cumulative
distribution of area, S, as a function of tidal elevation
(hypsometric curve) and the cross-section area of the

channel, A, as a function of tidal elevation are reported by
Pethick [1980] and Bayliss-Smith et al. [1978] (Figures 3b,
3c, and 3d); all the data are converted to the reference
elevation (ordnance datum) utilized by Bayliss-Smith et al.
[1978].
[32] We utilize the watershed relative to the channel cross

section indicated in Figure 2 and the distribution of channels
reported by Pethick [1980] (Figure 4a). We then compute
the distance of each channel location from the cross section
along the channel network (Figure 4b; see also Fagherazzi
et al. [1999]). The water path on the marsh surface is instead
computed following the steepest descent along the water
surface (Figure 4c; see also Rinaldo et al. [1999a]). Finally,
in Figure 4d we report the distribution of the total hydraulic
distance (channel distance xc plus the distance within the
marsh, xm) between the outlet and every point within the
marsh watershed. This distribution is shown as a percentage
of drainage area in Figure 5a. To calculate the distribution of
travel times of water particles during the flooding and
drainage of the marsh platform, we need to specify a
characteristic water speed in the channel and marsh portion
of these paths and then compute the travel times using
equation (10).
[33] In Figure 5b we indicate possible distributions of

travel times for a channel velocity of 0.5 m/s and different
values of water velocity on the marsh ranging from 0.01 to
0.5 m/s. The velocities in both the channel and on the marsh
surface are in good agreement with field measurements in
marsh systems summarized by Rinaldo et al. [1999b]. These
distributions of travel times determine the function fh in
equation (3) and will be used to calculate the tidal discharge
and its temporal variability.

4. Results

[34] In a first set of simulations we compare the conti-
nuity model (equation (1)) with the tidal instantaneous
geomorphologic elementary response model (TIGER) model
(equation (3)). We use a simple sinusoidal tide having a
period of 12 hours and a total excursion of 5 m, and mean
sea level is set at �0.85 m. The calculation proceeds as
follow: The tidal elevation h and the rate of elevation
change dh/dt are computed from the tidal stage hydrograph.
The surface S below water in equation (1) and (3) is
determined from the hypsometric curve reported by Pethick
[1980] (Figure 3b). The distribution of travel times is then
determined from equation (10) assuming two values for the
velocity for water flow in the channels and on the marsh
platforms. The discharge is computed with the convolution
reported in equation (3).
[35] The results of the continuity model (equation (1)) of

Boon [1975] are reported in Figure 6a. As expected, the
continuity model captures the two velocity surges when the
marsh platform is flooded and drained. At these two instants
of the tidal cycle the entire marsh surface is below water (S
is maximum in equation (1)) and the rate of tidal elevation
change is the highest within the period of marsh submer-
gence (the rate of tidal elevation change is maximum at
mean sea level and decreases to zero at high water). The
stage-discharge relationship is symmetrical, since both flood
and ebb surges occur at the same tidal elevation. Conversely,
the stage discharge relationship of the TIGER model dis-
plays the characteristic asymmetry (Figure 6b), with a flood

Figure 3. Morphological and tidal characteristics of the
study site. (a) Tidal stage as a function of time for the
tides of 2 December 1975 (storm surge), 8 March 1977,
and 10 March 1977 (adapted from Healey et al. [1981].
(b) Hypsometric curve of the studied marsh [after Pethick,
1980]. (c) Channel cross-sectional area as a function of tidal
stage [after Pethick, 1980]. (d) Creek cross section [adapted
from Bayliss-Smith et al., 1978].

6 of 12

W02419 FAGHERAZZI ET AL.: GEOMORPHIC STRUCTURE OF TIDAL HYDRODYNAMICS W02419



discharge peak occurring when the water surface elevation
is above the marsh surface and an ebb discharge peak for
elevations below the marsh surface. The asymmetry
increases as the travel times increase. Thus both the distri-
bution of hydraulic distances within the marsh drainage area
and the characteristic water velocities can influence the
stage-discharge relationship at the channel mouth. More-
over, the convolution in equation (3) reduces the discharge
surge when the average travel time on the marsh surface
increases. We can then expect that larger salt marshes or salt
marshes with a lower drainage density have tidal surges of
reduced dimension relative to the drainage area. In fact, in
both situations the average travel time is higher, smoothing
the discharge peak through the convolution of equation (3).
[36] The flow asymmetry is further enhanced if we

consider the relationship between stage and average cross-
sectional velocity, U. In fact, the velocity increases for flows
confined within the channel, since for the same discharge
the cross-sectional area A available is less (Figure 3b). Thus,
for a sinusoidal tide the stage-velocity relationship displays
high velocities during ebb (ebb dominant), when flow is
concentrated in the channel.
[37] We then compare the results of the TIGER model

with the velocity measurements of Bayliss-Smith et al.

[1978] and Healey et al. [1981]. In Figure 7a we compare
the stage-discharge relationship measured in the field with
the one calculated with the continuity model for the spring
tide of 8 March 1977. We convert the velocity measure-
ments of Healey et al. [1981] in discharge by a multiplica-
tion with the creek cross-sectional area reported by Pethick
[1980] (Figure 3c). As expected, both flood and ebb surges
are delayed with respect to the continuity model, even
though the magnitude of the discharge peak is of the same
order. The delay in discharge peaks is even more obvious if
we plot the measured discharge as a function of time versus
the discharge obtained from the continuity model (Figures 7b
and 7c).
[38] We then account for the delay associated with the

distribution of travel times and calculate the discharge
hydrograph with the convolution indicated in equation (3).
We utilize different values of channel and marsh platform
velocity as reported in Figure 5b. The results (Figure 7b)
show that the distribution of travel times obtained with a
channel velocity of 0.5 m/s and a marsh platform velocity of
0.05 m/s leads to peaks in tidal discharge during flood and
ebb that are close to the measured values. However, the
phasing is not well captured, with the calculated flood peak
occurring before the measured one. Conversely, a marsh

Figure 4. Calculation of the hydraulic distances (from the oulet/inlet) in the marsh watershed. (a) Salt
marsh watershed and channel network extracted from aerial images. (b) Distances along the channel
network. (c) Distances on the marsh surface. (d) Total distance (sum of the distance along the tidal
channel and the distance on the marsh platform) for every marsh location.
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platform velocity of 0.025 m/s (Figure 7c) leads to a peak
discharge that occurs during flood at the same time as the
measured value, but produces an attenuated velocity surge
during ebb. An average value of flow velocity between 0.05
and 0.025 m/s can be then considered optimal for the
TIGER model. We also note that the model results are very
sensitive with respect to the velocity on the marsh surface,

which regulates the distribution of travel times. Finally, the
presence of tidal channels increases the propagation speed
of the tidal signal, thus reducing the average travel time of
water particles (several locations within the marsh can be
reached by apical flow from the channel head). As a result
the peak discharge increases and the stage-discharge asym-
metry is reduced.
[39] We can also attempt to compute the distribution of

travel time by deconvolving the measured discharge hydro-
graph from the discharge calculated from the continuity
model (equation (1)). The deconvolution is implemented as
follows: First, we subtract the average from the measured
discharge hydrograph because for continuity the total vol-
ume entering the marsh during flood has to be equal to the
total volume exiting the marsh during ebb. Differences
between the two volumes can be ascribed to errors in the
measurement of the discharge and therefore can be re-
moved. Then we rescale the discharge of the continuity
model (equation (3)) so that the tidal prism is identical to the
one measured. We note that for the two spring tides of 8 and
10 March 1977 we have to increase the discharge of the
continuity model by 30% in order to match the measured
tidal prism. This suggests that the total marsh drainage area
computed by Pethick [1980] might be underestimated. For
the storm surge of 2 December 1975 the measured tidal
prism instead agrees with the one calculated from the
continuity model. To remove finite size effects, we zeropad
the discharge for a length 3 times the original signal and we
taper the extremities with a second-order polynomial. The
result of the deconvolution for the tide of 8 March 1977 is
reported in Figure 8a. From this signal we extract the
positive component until the first intersection with the
x-axis, in that negative values of f(t) do not have physical
basis. The distribution thus obtained is reported in Figure 8b.
In Figure 8c we compare the results of the TIGER model
based on the two distributions reported in Figures 8a and 8b
with the measured discharge. Both distributions of travel
times lead to a discharge hydrograph that well matches the

Figure 5. (a) Distribution of distances within the marsh
watershed from the reference cross section (outlet/inlet). (b)
Distribution of travel time for different values of velocities
in the channels Vchannels and on the marsh surface Vmarsh.

Figure 6. Stage-discharge relationships for a sinusoidal tide of maximum amplitude of 2.5 m in the
marsh system indicated in Figure 3. (a) Continuity model of Boon [1975]. (b) Tidal geomorphic unit
hydrograph model with different values of the velocities in the channels Vchannels and on the marsh
surface Vmarsh.
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measured one. Moreover, the timescale of delay indicated
from the distribution in Figure 8b (�50 min) well matches
the results of the direct simulation with Vchannel = 0.5 m/s
and Vmarsh = 0.025 m/s (�50 min; see Figure 5b).

Figure 7. Comparison between computed and measured
discharges for the tide of 8 March 1977. (a) Comparison
between the measured discharges and the continuity model
of Boon [1975]. (b and c) Comparison among measured
discharges in time and the results of the continuity model
and the tidal instantaneous geomorphologic elementary
response model (TIGER) model with different values of the
velocities in the channels Vchannels and on the marsh surface
Vmarsh.

Figure 8. Determination of the distribution of travel time
from measured discharges and the continuity model. (a)
Deconvolution of the measured discharge from the
continuity model. (b) Distribution of travel time calculated
from the positive part in Figure 7a. Convolution of the
continuity model with the distribution of travel time
reported in Figures 8a and 8b: (c) time-discharge relation-
ship and (d) stage-discharge relationship.
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[40] The same procedure was applied to the storm surge
of 2 December 1975 and the spring tide of 8 March 1977
(Figure 9). All the travel time distributions extracted from
these data exhibit a maximum travel time (also known as
concentration time) around 50 min (Figure 9a) and well
match the measured discharge (Figures 9b, 9c, and 9d).

5. Discussion and Conclusions

[41] The TIGER model presented herein and based on an
extension of the continuity model of Boon [1975] allows
linking the asymmetry in discharge peaks during overbank
flow to the distribution of travel times of water particles
within the salt marsh watershed. The importance of this
result stems from its ability to relate the travel time
distribution and the hydrodynamics of tidal watersheds to
the geomorphic structure of the salt marsh and specifically
to the distance traveled by water particles both within the
channel network and on the marsh surface.
[42] The TIGER model presented herein addresses two

important limitations of the Boon [1975] model indicated by
Healey et al. [1981]. The velocity surges are delayed, thus
producing realistic discharge peaks above and below the
marsh platform during flood and ebb, respectively. The
moving average embedded in the convolution integral of
equation (3) smoothes the discharge oscillations that are
characteristics of the continuity model of Boon [1975] and
are produced by sudden changes in the rate of tidal
oscillations. The model results are also in agreement with
the field study of French and Stoddart [1992], which
ascribes the existence of flow transients to the discontinuous
prism-stage relationship, captured in our model by the
hypsometric curve in equation (3). French and Stoddart
[1992] also indicate that the asymmetry of creek velocity is
due to differential flow resistance for channel and overbank
flow, which is embedded in our framework in the different
tidal velocities for the channels and the marsh surface.
[43] Recently, Rinaldo et al. [1999a] and Marani et al.

[2003] presented a model that links the peak tidal discharge
to the morphology of the tidal basin through the definition
of appropriate watersheds for each tidal channel. The model
accounts for the propagation of the wave in the channels but
does not include the delay in tide propagation on flats and
salt marshes, over which the flow is considerably slower
because of bottom friction and vegetation. Moreover, in this
modeling framework the continuity equation is not consid-
ered, limiting its applicability to peak flows rather than full
tidal cycles.
[44] Our formulation paves the way for the application of

recent results on the geomorphic structure of salt marshes
and the scaling properties of tidal networks [Fagherazzi et
al., 1999; Marani et al., 2003; Novakowski et al., 2004;
Feola et al., 2005; Hood, 2007] to the study of marsh creek
hydrology. For example, the distribution of travel distances
on the marsh surface introduced by Marani et al. [2003]
bears important consequences for the tidal velocity asym-
metry during overbank flow, since it is directly linked to the
travel time of water particles. Conversely, from measure-
ments of tidal flow at a specific cross section we can infer
important morphological information on the salt marsh
structure, in a way that resembles the analysis by Rinaldo
et al. [1995] for fluvial watersheds. Specifically, if we know
the hypsometric curve of the marsh area relative to a

Figure 9. Determination of the distribution of travel time
for the storm surge of 2 December 1975 and 8 March 1977.
(a) Travel time calculated with a deconvolution of the
measured discharge from the continuity model; comparison
between measured discharge, discharge obtained from the
continuity model, and the geomorphologic unit response
model presented herein. (b) Storm surge of 2 December
1975. (c) Spring tide of 10 March 1977. (d) Measured and
simulated stage-discharge relationship for the storm surge of
2 December 1975 and the spring tide of 8 March 1977.
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specific creek cross section, we can infer the distribution of
travel times from measurements of tidal velocity at the
outlet of the watershed. The distribution of travel times is
critical for the determination of the residence time of water
particles on the marsh platform, which in turn is linked to
many biogeochemical processes like nutrients uptake and
salt removal from the marsh soil.
[45] An important result is that the travel time distribu-

tions extracted from tidal cycles having a different excur-
sion are similar (e.g., maximum residence time around
50have min) even though the velocity of propagation of
the tidal signal changes as a function of water depth. This is
because the asymmetry in storm surges is dictated by the
delay in signal propagation over the marsh surface when the
platform is just flooded or almost drained, i.e., for small
water depths rather than for high water levels (slack water).
The system therefore responds in a similar way for tides of
different amplitude since the critical instant determining the
magnitude of the storm surge is when the flooding/drainage
of  the  marsh  platform  occurs,  rather  than for  high  tide
conditions.
[46] Our framework is valid only if the drainage area of

each channel is constant during a tidal cycle. Torres and
Styles [2007] showed that during high stages of the tidal
cycle the hydrodynamics is only partly controlled by the
creeks and that large-scale gradients in surface water in the
intertidal area can give rise to flow exchanges between
contiguous marsh creeks, producing flow reversals. Similar
results are presented by Temmerman et al. [2005b], who
show that during shallow inundation cycles almost all water
is supplied via the creek system, while during higher
inundation cycles the water is directly supplied via the
marsh edge. Under these conditions the continuity model
of Boon [1975] loses its applicability since the watershed
area varies in time. However, this hydrodynamic behavior is
limited to high tide stages when the water depth on the
marsh platform is high enough to allow consistent water
fluxes among different tidal channel watersheds. Velocity
surges occur instead just after the flooding and the drainage
of the marsh platform, when the hyrodynamics is still
strongly controlled by the creeks and the watershed bound-
aries are fixed. The application of our model is then valid at
the beginning of marsh flooding and at the end of marsh
drainage, which are the most geomorphologically signifi-
cant stages of the tidal cycle, as they are associated with the
peak velocities. Caution should be used in the application of
the model during high tide conditions.
[47] In this preliminary study we have considered a flat

marsh platform and derived the drainage patterns following
the gradients of water surface [see Rinaldo et al., 1999b].
However, subtle differences in microtopography and the
presence of channel levees can influence the water path-
ways during flooding and ebbing. A thorough analysis with
high-resolution data is thus deemed necessary for future
work.
[48] Finally, our modeling framework provides important

results for marsh reconstruction and rehabilitation projects.
For example, the presence of ditches on the marsh surface
can reduce the average travel time of water particles, thus
promoting a faster response of the system to tidal oscilla-
tions and higher peak discharges in the channels. The model
can also estimate the residence time of the water on the

marsh surface, which regulates ecological functions critical
for restoration projects.
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